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PERRIN NUMBERS WHICH ARE THE SUM, DIFFERENCE, OR PRODUCT
OF TWO FIBONACCI NUMBERS

BOUAZZAOUI ZAKARIAE ¥, BOUGHADI ZOUHAIR “~, AND EL HABIBI ABDELAZIZ

ABSTRACT. Let (Ey), >0 be the Perrin sequence given by E, 13 = E,41 + En, with
the initial conditions g = 3, E1 = 0 and E» = 2. The aim of this paper is to find
all Perrin numbers which are the sum, difference or product of two Fibonacci numbers
by using the methods of Baker-Davenport. We prove the finitude of the number of
solutions, which we describe explicitly in each equation.

KEeEyworbps. Fibonacci numbers, Perrin numbers, Linear form in logarithms, Reduction
method.

1. INTRODUCTION

In the past few decades, questions of solvability of Diophantine equations have seen
considerable advances, especially after the affirmative answer to Fermat’s last theorem.
The proof given by Wiles [16] uses tools from several fields of mathematics, including
representation theory and arithmetic geometry, as well as the modular approach of Wiles
works for large classes of equations arising from elliptic curves or related to modularity
results of elliptic curves. As an example, for Fibonacci sequence (F,,),>0 and Lucas
sequence (L, )n>0, the equations like F,, = y? and L,, = yP are dealt with in [7], [4]
and subsequent papers, where modularity results are used, and Baker’s theory of linear
forms in logarithms played an important role.

The methods of Baker-Davenport ([S]) give bounds for exponents, which are usually
very large, which can be reduced with the help of specific computational algorithms.
These are highly effective in the class of Diophantine equations arising from recurrence
sequences, where the methods prove the finitude of the number of solutions, like the
example studied in this paper. Here we focus on Perrin and Fibonacci sequences.

Recall that (E,,),>0 is the Perrin sequence given by
En+3 = En+1 + En,

with the initial conditions Ey = 3, E1 = 0 and Eo = 2. Although the sequence is named
after R. Perrin who studied it in 1899 ([10]), it had been explored earlier, in 1876, by
Edouard Lucas. The following is the list of a few Perrin numbers:

3,0,2,3,2,5,5,7,10,12, 17, 22,29, 39, 51, 68, 90, 119, 158, 209,
277, 367, 486, 644, 853, - - -

It is the sequence A001608 in the OEIS ([15]). For a subsequent paper on Perrin numbers
and their properties see [14].
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(k)

In [13], the authors found all solutions of the Diophantine equation E = Fnk , where

Fék) is the k-generalized Fibonacci sequence. This paper is an addition to the growing lit-
erature around the study of Diophantine properties of certain linear recurrence sequences.
More specifically, we are interested in the following two diophantine equations

Es:Fn:l:Fmv (1)

and
Es = FnFma (2)

where n,m, and s are nonnegative integers. Precisely, we prove the following three
theorems.

Theorem 1.1. The Perrin numbers which are the sum of two Fibonacci numbers are:
0,2,3,5,7,10,22,29, 39, 68, 90, 644. Namely, we have:

0=FE, = 2F,
2=FEy = Fy=2F = )+ I =2F = F3+ Fp,
3=Ey=FE3=F3+ I = F3+ Fy, = Fy+ Iy,
5 =FE5 = Eg = Fy + F3 = F5 + Fo,
7T=Fk; = F5 + I3,

10 =Eg = 2Fs — Fs + Fs,

22 =F11 = Fg+ F1 = F3 + F3,

29 =Fyo = F3 + Fg,

39 =F3 = Fy + F5,

68 =F15 = 2Fy = Fio + F7,

90 =F16 = F11 + F1 = Fi1 + Fy,

644 =Fo3 = Fi5 + Fy.

Theorem 1.2. The Perrin numbers which are the difference of two Fibonacci numbers
are: 0,2,3,5,7,10,12, 29, 68. Namely, we have:

0=E1 =F,— I,
2=bky=Ey=F5—Fy=Fy— F =Fy— I, =1F5—Fj,
3=Eg=E3=F,— Fy=F5— F3 = Fs— I,

5=F5 =Fg=F5 — Fy=Fg — Fy = F; — Fg,

T—Fy = Fs— F, = Fs — Fy,

10 =Fs = Fy — Iy,

12=Fg= Fy— F, = Fy — Fy,

29 =F19 = Fy — Fr,

68 =F15 = 11 — F3y.
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Theorem 1.3. The Perrin numbers which are the product of two Fibonacci numbers are:
2,3,5,10, 39, 68. Namely, we have the following:

2=Fy =F,=F3 x F} = F3 x Fy,
3=Fy=F3=Fyx F| =Fy x Iy,
5=Fs = Fg = F5 x F1 = F5 x Fy,

10 =Fg = F5 X Fj,

39 =F13 = 7 x Fy,

68 =F15 = Fy X F3.

The same methods apply to find all integer solutions (s, m, n,r) of equations like
Es=F,+ F,+ F,, 3)

and

Es = F,F, F,, “)
see for instance [1], [11], [2] and subsequent references. Similar equations are pre-
viously considered by other authors (e.g., [12], [6], [8] and subsequent papers). For
computational purposes, we choose to consider in this paper the case of equations (1)
and (2).

2. AUXILIARY RESULTS

2.1. Linear forms in logarithms and the Baker-Davenport reduction method. The
proofs of our main theorems use lower bounds for linear forms in logarithms of algebraic
numbers and a version of Baker-Davenport reduction method. Let us recall the results
used throughout this paper.

For any nonzero algebraic number § of degree d over the field of rational numbers Q,
let a H?Zl (X — 5(i)) be the minimal polynomial of § over Z (with @ > 0), we denote

by
1 d
—— (@)
h(9) p (loga + izgl log max (1, |6 |>)

the usual absolute logarithmic height of d. The following properties of logarithmic height
are found in many works stated in the references:

h(6£&) < h(d)+ h(§) +log(2),
h(6ET) < h(8) + h(E),
h(o") |k[ h(5).
With the above notations, E.M. Matveev proved the following theorem (see [9]).

Theorem 2.1. Let 61,...,08; be real algebraic numbers and let by, ..., b; be nonzero
integers. Let D be the degree of the number field Q(01, . . ., 0;) over Q. 1f§‘1’1 e 5lbl —1#
0. Then

0006 — 1] > exp(—1.4 x 303 x 1% x D2(1 4 log D)(1 + log B)A, - - - Ay),

where

A; = max{Dh(J;),|logd;|,0.16} for j=1,...,1
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and
B > max{lbi], ..., |bl}.

The next lemma was proved by Dujella and Petho [5, Lemma 5]. This is a variation
of a result of Baker and Davenport [3]. For a real number z, || = || denotes the distance
from x to the nearest integer, that is || = ||= min{|x — n|: n € Z}.

Lemma 2.2. Let M be a positive integer, and let p/q be a convergent of the continued
fraction of the irrational number ) such that ¢ > 6 M, and let A > 0, B > 1 and p be
real numbers. Let € :=|| puq | =M || 1q ||. If € > 0, then there exists no solution to the
inequality

0<|uy—v+pl <AB™Y,
in positive integers u, v, and w with

log (Ag/e)

< M and w >
u < and w > log ()

We remark that Lemma 2.2 cannot be applied when ¢ < 0. For this case, we use
the following well-known technical result from Diophantine approximation, known as
Legendre’s criterion.

Lemma 2.3. (Legendre) Let r be a real number and x, vy integers such that

T - 1
yl 2%
Then r_Dr is a convergent of k. Furthermore, let M and N be nonnegative integers
Yy o Gk
such that qy > M. Let [ag, a1, a2, . . .| be the continued fraction expansion of k and put
a(M) :=max{a; : i=0,1,2,..., N}. Then the inequality
Tl 1
K>
yl — (a(M)+2)y

holds for all pairs (x,y) of positive integers with 0 < y < M.

2.2. Properties of Fibonacci and Perrin sequences.
In this subsection we recall necessary facts about Fibonacci and Perrin numbers that

will be used in the following.

Fibonacci numbers. The characteristic polynomial of the Fibonacci sequence is 2 —

x — 1 and its roots are denoted av = 1+—2‘/3 and 8 = 1%@ Thus, for any integer n > 0,
the Binet formula for F}, gives

o a — Bn
" V5

We can prove by induction that we have

"< F, <ol (5)
We remark that 1
l<a<?2 and §<|B|<1. (6)
Perrin numbers. The Binet formula for the Perrin sequence is
En=~"+n"+p", )
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where ~y, 7 and p = 7 are the roots of the polynomial 2 — = — 1. Precisely,

T4 1o —ry — 19 + i\/g(rl )
v = 6 and n = B ,

where r1 = /108 +12v/69 and 7o = v/108 — 121/69.

We make the following useful observation,
A2 < B, <AL foralln > 2. (8)

Furthermore, we have
1.32<vy< 133 and 0.86 < |n| = |p| < 0.87. )

3. PERRIN NUMBERS AS THE SUM OR DIFFERENCE OF TWO FIBONACCI NUMBERS

In this section we prove Theorems 1.1 and 1.2. For this, we first show that solutions
(n,m, s) of equation (1) satisfy m < n < 196 and s < 396, then we use the computer
to check such solutions.

Let us now consider equation (1). We start by comparing s and n. By (8) and (5) we
obtain

V2 <Ey=F,+F, <F,+F, <2" ! <o,
which gives that
(s —2)logy < (n+1)loga.
og o

0g Y

1
Since

< 2, we get

s < 2n+44. (10)
3.1. The initial bound on n. In this section we give a bound for the value of n for
equation (1).

Using the Binet formulas of the Fibonacci and Perrin numbers, we write (1) in the
following form:

a" — V5" = Vo' + VEp® + B+ VEE,.
Thus, we have

L—7"a V5| < —(|8]" +V5a™ ! +2V/5))°)

1
an

<

We set A1 := y*a~"/5 — 1. Then we have

|A1] < =T (11)

We now write equation (1) in the following way:

an am n m

R s s+ 5+7j:7_

Viovs TP TR R
Hence

la™ £ ™ — V5] < 2n|*VE + 8"+ |8 < 2VE+2< 7.
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o 1 ] s . . .
Multiplying by o (1 £ ™ ™)~ (with the assumption n # m in the case of the differ-
ence equation) we get

7 1

1 —~5vVBa (1 + mfn71<7_7_
1=y VB (1 am ) <

1
To bound ————— note that < , and observe that ——— <
a1 < 3. Hence, Tignn < 3. Thus, we obtain
21
|As| < L (12)

where Ay == *v/5a (1 £a™ )71 — 1.

Lemma 3.1. If (n,m, s) are nonnegative integer solutions of the Diophantine equation
(1) withm < n, thenn < 3 x 1031,

Proof. We obtain this bound of n after using Matveev’s theorem to give a lower bound
for |A1] and |A2|. In order to do this we need the necessary data. We consider the number
field L = (@(\/5, ~) which is of degree D = 6 over Q. For the linear form A; we denote

=2 & =a, 53=\f5, by =5, by=-n and b3=1.
Notice that

log v log o

3 and  h(d3) = log(V5).

Hence, we choose 41 = 0.6, Ay = 1.5, A3 = 4.9, and B = 2n + 4.

Let us prove that A; # 0. For this, let K be the normal closure of .. We consider the
Galois automorphism o € Gal(K/Q) which satisfies o(y) = 1 and o(«) = «. Suppose
that A; = 0, hence v*a~"v/5 = 1. By applying the automorphism ¢ to this equality we

obtain
a5 = 1.
Using (9), for n, s > 1, we find that

h(é1) =

h(62) =

nsoz_”\/g‘ <1, Vn,s>1,
which is a contradiction with the assumption A; = 0.

Then we have the following bound
A1l > exp(—1.4 x 305 x 3%5 x 62(1 +log (6))(1 + log (2n + 4))
x4.9 x 1.5 x 0.6)
> exp (—6.35 x 10"3(1 + log (2n + 4))).
After taking the logarithm and using (11) we find that
(n—m)loga < 6.4 x 10"3(1 + log (2n + 4)). (13)
For Ag := v*v/5a~ (1 + o™ ")~ — 1, we consider the following data
0o1=v, Oa=ca, O03= \/5(1 +a™ ™) by=s, by=-n and b3=1.
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As above we take
D=6, (=3, B=2n+4, A; =06, Ay=15 and A3 =9+3(n—m)loga.
Let us have a look on the logarithmic height of 3. We have

1
h(d3) < logVs+|m —nl ogQ(a) + log 2
1
= log(2V5) + (n—m) Ogéa).
Since Y
) 1+£am™m™" 2
by= YO d ol=12Y o= o9
3 1iam—n<3\/g and 7 <\/5<,

we have [log(d3)| < 2. Then we can take
max{6h(d3),|logds|,0.16} < Az := 9+ 3(n —m)log (a).

Note that we have Ay # 0 in a similar way as for A;. Applying Matveev’s theorem we
obtain the following bound for As:

|Aa| > exp(—1.4 x 30% x 315 x 62(1 4 log (6))(1 + log (2n + 4)) x 1.5 x 0.6 x A3)
> exp (—1.3 x 101(1 +log (2n + 4)) x A3).
Applying the logarithm and using (12) we obtain
nloga < 1.31 x 1013(1 4 log (2n + 4))(9 + 3(n — m) log a).
Using (13) we obtain that
9+ 3(n —m)loga < 1.93 x 10'(1 + log (2n + 4)).

Therefore,
nloga < 2.53 x 1027(1 4 log (2n + 4))2.

Notice that 2n + 4 < 6n for n > 1, then we have
nloga < 2.53 x 10%7(1 + log (61))>.
With the help of Maple we find that n satisfies
n < 3x 103,
O
3.2. The reduction procedure. We note that the bound from Lemma 3.1 is too large

for computational purposes. However, with the help of Lemmas 2.2 and 2.3, they can be
considerably sharpened. This section is dedicated towards this goal.

Let
Iy = slog () — nlog (a) + log (V5).
If Iy > 0, using the fact that z < exp (z) — 1 for all x > 0, together with the inequality

(11) we obtain that
5

qn—m '

I' <
IfI'; < 0, we have
Ty <exp(—T1)—1=exp(—I)|exp (1) —1].
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Notice that for n — m > 4 we have

exp (I'1) > 0.27,
which gives

exp (—I'1) < 3.8.

Then by (11) we obtain
19

qn—m :

‘F1| <

Therefore we have the inequality

1 1 )
o8 () T8V ag ) (14)
log (a) log (a)
Let us now apply Lemma 2.2. For this we put
M=61x10*", w=n—-m, A=395 B=oa,

_ log(y) _ log (V)

Y= loga) " Tog(a) |
qeo = 722546402692124058304485813141551.

Note that
e :=|| pgeo || —M || ¥geo ||> 0.153.

Since s < M by (10) and Lemma 3.1, the inequality (14) has no solutions for

nem > 0e(Aa/e) e
log B

This means that n — m < 168.

To reduce the bound on the integer n in Lemma 3.1 we apply again Lemma 2.2. We
put

V5
Iy = slog () — nlog () + log <1iam |

If 'y > 0, by the inequality (12) we have
I'y < E
If 'y < 0, we have

ITo| < exp(—I'2) — 1 =exp(—I2)|exp (I'2) — 1].

Notice that o1 o1
o <exp (T2)—1< o

and for n > 7 we have
21
02<1- on S exXp (Ty).

Hence, we obtain exp (—I'3) < 5 and it follows that

|F2| < y
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Summarizing we have the following inequality

(log () n log(liﬁ—“)
log () log ()

218.2

an

5)

We consider the following data:

M=61x10*, w=n, A=2182 B=a,

V5
(7) log 1+aF
log (v
— = k=1,2,...,178
1/} log (a) Y lu’i,k‘ log (a) ? = Y Y

qes = 276210093001120272437241265542247559.
A simple calculation with Maple shows that for £ = n — m < 168,
€ Z” H+.,94 G66 H —-M ” Vo6 ”> 0.000499

unless k = 2 for ji4 , or k = 4 for p1_ ;. which are treated separately using Lemma 2.3
in the next paragraph. For ¢ > 0.000499 it follows from Lemma 2.2 that equation (1)
can have solutions only for integers n < 196. By inequality (10) it follows that s < 396.

For the cases k = 2 for uy or k = 4 for u_ we make use of Lemma 2.3. Notice that
fork =4 wehave F, 14— F,, = Fy 3+ F,12—F, = F, 13+ F,,+1. Hence it remains to

5
consider only the case k = n — m = 2 for which we have 4 2 = log (14-\/;1—”> =
o

log («). Thus, inequality (15) becomes

'3 log (7)
log (a)

‘ 218.2
—n4+1| < .

an

It follows that

log(y) n-1 - 218.2
log () s sam
218.2 1

Assume that n > 170, since s < M = 6.1 x 103! we obtain that —.
sam 252

-1 1
n is a convergent to 0 (7)

s log (@)

By Lemma 2.3 the quantity whose continued fraction

expansion is given by
log (7)
log (av)
such that g5; = 78018265498682576556029134678639 is the first denominator of a
convergent b satisfying ¢ > M. We obtain that
q

= [ao,a1,a3,..]=100,1,1,2,2,6,2,1,2,1,2,1,1,11,1,2,3,1,7,37, .. ]

1

(a(M) +2)s? —

Since a(M) := maz{a; : 1 =0,1,2,...,57} = 64 we have
1 218.2

< P
6652 san’

—, forany s < M.

] —1| 2182
og(y) n '<

log () s s«
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which gives that
log (218.2(a(M) + 2)M)
- log (a)
Hence in both cases we have n < 196.
We use Maple to solve the Diophantine equations (1) in the ranges 1 < m < n < 300
and s < 604, and we obtain only the solutions displayed in the statement of Theorems
1.1 and 1.2. This completes the proof of both theorems.

< 171.99.

4. PERRIN NUMBERS AS A PRODUCT OF TWO FIBONACCI NUMBERS

The aim of this section is to prove Theorem 1.3. We first show that solutions (n, m, s)
of equation (2) satisfy m < n < 194 and s < 776, then we use a computer program to
check such solutions.

We start with bounding s in terms of n. We make use again of the properties of
Fibonacci and Perrin numbers to obtain

s < 4n. (16)

4.1. The initial bound on n. Now we reword equation (2) as
1

£ = B (@™ = B") =7+ + "

Using the fact that 3 = —a !, we obtain

5
1— 5,ysafn7m — prE=e (,)75 + ps) o (_a72)n+m + (_a72)n + (_a72)m_

We set A3 = 57°a~"~"™ — 1. Then we have
[As| < (17)

Let us rewrite equation (2) as

Reordering and taking the absolute value we obtain the following

V5 [ 2 1
1—~%a" " 5F_1‘<7 e s i
ot < 2 (bl + )
This gives that

6
Adf < — (18)
(6

where Ay := ysa_"F—\/j —1.
Lemma4.1. If F,, F,, = Es and n > m, then we have n < 1.36 x 1032,

Proof. We apply Theorem 2.1 to Az := 5y*a~ "™ — 1. We first note that, in a similar
way as in the previous section, we can show that Ag # 0. We take

=3, 6 =5, dh=7v d&3=0a b =1 by=s and b3=—-—n—m.
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We are still using the field . = Q(+/5, v) which is of degree D = 6 over Q. We have
furthermore

1 log a
h(8) =log(5). h(d2) = =52, and  h(%) ==

We now choose
Ay =10, Ay=06, A3=1.5, and B =d4n.
With the above data, the theorem of Matveev gives that
|Az] > exp (—1.3 x 10™ x (1 + log (4n))).
Using inequality (17) we obtain
mlog (a) < 1.4 x 10*(1 + log (4n)). (19)
To be able to apply Matveev’s result to A4, we consider the necessary data, namely

l=3, (512\/5/Fm, (522’)/, (53=Ck, blzl, b2:$ and b3:—n.

5
Notice that 6; = v/5 [ Fp = m, hence

h(01) < 2mh(a) + log(10) = mlog a + log(10).
Moreover, by a2 < F,,, < o™ ! we have
| log (51‘ < 6h(51)

Thus, by (19) we can take A1 = 8.41 x 10'4(1 + log (4n)).
Now we can apply Matveev’s theorem to A4. More precisely, we obtain

|A4] > exp (—1.1 x 10%(1 + log (4n))?).
Hence, using (18) we obtain
nlog (a) < 1.12 x 10%(1 + log (4n))>.
With the help of Maple we get that
n < 1.36 x 10%.
O
4.2. The reduction procedure. Now we need to reduce the bound obtained in Lemma

4.1. To do so, we use Lemma 2.2. Using the same methods as in the previous section on
log(As + 1) and log(A4 + 1) we obtain for m > 6 the following inequalities:

log() 5 _
- 100.20°™ 20
‘Slog(a) (n—i—m)—i—log(a) < a™ ™, (20)
and

lo V5
GJos() _ loe(%) <1040 Q1)

log(a) log(a)
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For (20), we consider the following data:
M = 544x10%, w=m, A=1002, B=a,

log (y log(5
w = ( )7 H = ( )7
log (a) log (a)
qe3 = 11478647774934506182455699155379417.

Notice that, by Lemma 4.1 and (16) we can see that s < M. Since € > 0.18, the inequal-
ity (20) has no solutions for m > 176.071. Then the possible solutions exist only for
m < 176.

Now we focus on (21). We have the following data:
M = 544x10%, w=n, A=104, B=«

log (7) log (%)
YT lgle) M7 Togl@)
ges = 276210093001120272437241265542247559.

With the help of Maple, this data and Lemma 2.2 give that the inequality (21) has no

solutions for n > 194.595. Then, it has possible solutions only for n < 194.
We use Maple to solve the Diophantine equation (2) in the ranges 1 < m <n < 194
and s < 776, and we obtain only the solutions displayed in the statement of Theorem

1.3. This completes the proof of the theorem.
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