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PERRIN NUMBERS WHICH ARE THE SUM, DIFFERENCE, OR PRODUCT
OF TWO FIBONACCI NUMBERS

BOUAZZAOUI ZAKARIAE , BOUGHADI ZOUHAIR , AND EL HABIBI ABDELAZIZ

Abstract. Let (En)n≥0 be the Perrin sequence given by En+3 = En+1 + En, with
the initial conditions E0 = 3, E1 = 0 and E2 = 2. The aim of this paper is to find
all Perrin numbers which are the sum, difference or product of two Fibonacci numbers
by using the methods of Baker-Davenport. We prove the finitude of the number of
solutions, which we describe explicitly in each equation.

Keywords. Fibonacci numbers, Perrin numbers, Linear form in logarithms, Reduction
method.

1. Introduction

In the past few decades, questions of solvability of Diophantine equations have seen
considerable advances, especially after the affirmative answer to Fermat’s last theorem.
The proof given by Wiles [16] uses tools from several fields of mathematics, including
representation theory and arithmetic geometry, as well as the modular approach of Wiles
works for large classes of equations arising from elliptic curves or related to modularity
results of elliptic curves. As an example, for Fibonacci sequence (Fn)n≥0 and Lucas
sequence (Ln)n≥0, the equations like Fn = yp and Ln = yp are dealt with in [7], [4]
and subsequent papers, where modularity results are used, and Baker’s theory of linear
forms in logarithms played an important role.

The methods of Baker-Davenport ([5]) give bounds for exponents, which are usually
very large, which can be reduced with the help of specific computational algorithms.
These are highly effective in the class of Diophantine equations arising from recurrence
sequences, where the methods prove the finitude of the number of solutions, like the
example studied in this paper. Here we focus on Perrin and Fibonacci sequences.

Recall that (En)n≥0 is the Perrin sequence given by

En+3 = En+1 + En,

with the initial conditions E0 = 3, E1 = 0 and E2 = 2. Although the sequence is named
after R. Perrin who studied it in 1899 ([10]), it had been explored earlier, in 1876, by
Edouard Lucas. The following is the list of a few Perrin numbers:

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209,

277, 367, 486, 644, 853, · · ·
It is the sequence A001608 in the OEIS ([15]). For a subsequent paper on Perrin numbers
and their properties see [14].
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THE FIBONACCI QUARTERLY

In [13], the authors found all solutions of the Diophantine equation Es = F
(k)
n , where

F
(k)
n is the k-generalized Fibonacci sequence. This paper is an addition to the growing lit-

erature around the study of Diophantine properties of certain linear recurrence sequences.
More specifically, we are interested in the following two diophantine equations

Es = Fn ± Fm, (1)

and

Es = FnFm, (2)

where n,m, and s are nonnegative integers. Precisely, we prove the following three
theorems.

Theorem 1.1. The Perrin numbers which are the sum of two Fibonacci numbers are:
0, 2, 3, 5, 7, 10, 22, 29, 39, 68, 90, 644. Namely, we have:

0 =E1 = 2F0,

2 =E2 = E4 = 2F1 = F2 + F1 = 2F2 = F3 + F0,

3 =E0 = E3 = F3 + F1 = F3 + F2 = F4 + F0,

5 =E5 = E6 = F4 + F3 = F5 + F0,

7 =E7 = F5 + F3,

10 =E8 = 2F5 = F6 + F3,

22 =E11 = F8 + F1 = F8 + F2,

29 =E12 = F8 + F6,

39 =E13 = F9 + F5,

68 =E15 = 2F9 = F10 + F7,

90 =E16 = F11 + F1 = F11 + F2,

644 =E23 = F15 + F9.

Theorem 1.2. The Perrin numbers which are the difference of two Fibonacci numbers
are: 0, 2, 3, 5, 7, 10, 12, 29, 68. Namely, we have:

0 =E1 = F2 − F1,

2 =E2 = E4 = F3 − F0 = F4 − F1 = F4 − F2 = F5 − F4,

3 =E0 = E3 = F4 − F0 = F5 − F3 = F6 − F5,

5 =E5 = E6 = F5 − F0 = F6 − F4 = F7 − F6,

7 =E7 = F6 − F1 = F6 − F2,

10 =E8 = F7 − F4,

12 =E9 = F7 − F1 = F7 − F2,

29 =E12 = F9 − F5,

68 =E15 = F11 − F8.
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PERRIN NUMBERS WHICH ARE THE SUM

Theorem 1.3. The Perrin numbers which are the product of two Fibonacci numbers are:
2, 3, 5, 10, 39, 68. Namely, we have the following:

2 =E2 = E4 = F3 × F1 = F3 × F2,

3 =E0 = E3 = F4 × F1 = F4 × F2,

5 =E5 = E6 = F5 × F1 = F5 × F2,

10 =E8 = F5 × F3,

39 =E13 = F7 × F4,

68 =E15 = F9 × F3.

The same methods apply to find all integer solutions (s,m, n, r) of equations like

Es = Fn ± Fm ± Fr, (3)

and
Es = FnFmFr, (4)

see for instance [1], [11], [2] and subsequent references. Similar equations are pre-
viously considered by other authors (e.g., [12], [6], [8] and subsequent papers). For
computational purposes, we choose to consider in this paper the case of equations (1)
and (2).

2. Auxiliary results

2.1. Linear forms in logarithms and the Baker-Davenport reduction method. The
proofs of our main theorems use lower bounds for linear forms in logarithms of algebraic
numbers and a version of Baker-Davenport reduction method. Let us recall the results
used throughout this paper.

For any nonzero algebraic number δ of degree d over the field of rational numbers Q,
let a

∏d
i=1

(
X − δ(i)

)
be the minimal polynomial of δ over Z (with a > 0), we denote

by

h(δ) =
1

d

(
log a+

d∑
i=1

logmax
(
1, |δ(i)|

))

the usual absolute logarithmic height of δ. The following properties of logarithmic height
are found in many works stated in the references:

h(δ ± ξ) ≤ h(δ) + h(ξ) + log(2),

h(δξ±1) ≤ h(δ) + h(ξ),

h(δk) = |k|h(δ).
With the above notations, E.M. Matveev proved the following theorem (see [9]).

Theorem 2.1. Let δ1, . . . , δl be real algebraic numbers and let b1, . . . , bl be nonzero
integers. Let D be the degree of the number field Q(δ1, . . . , δl) over Q. If δb11 · · · δbll −1 �=
0. Then

|δb11 · · · δbll − 1| ≥ exp(−1.4× 30l+3 × l4.5 ×D2(1 + logD)(1 + logB)A1 · · ·Al),

where
Aj = max{Dh(δj), | log δj |, 0.16} for j = 1, . . . , l
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THE FIBONACCI QUARTERLY

and
B ≥ max{|b1|, . . . , |bl|}.

The next lemma was proved by Dujella and Petho [5, Lemma 5]. This is a variation
of a result of Baker and Davenport [3]. For a real number x, ‖ x ‖ denotes the distance
from x to the nearest integer, that is ‖ x ‖= min{|x− n| : n ∈ Z}.

Lemma 2.2. Let M be a positive integer, and let p/q be a convergent of the continued
fraction of the irrational number ψ such that q > 6M , and let A > 0, B > 1 and μ be
real numbers. Let ε :=‖ μq ‖ −M ‖ ψq ‖. If ε > 0, then there exists no solution to the
inequality

0 < |uψ − v + μ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log (Aq/ε)

log (B)
.

We remark that Lemma 2.2 cannot be applied when ε < 0. For this case, we use
the following well-known technical result from Diophantine approximation, known as
Legendre’s criterion.

Lemma 2.3. (Legendre) Let κ be a real number and x, y integers such that∣∣∣∣κ− x

y

∣∣∣∣ < 1

2y2
.

Then
x

y
=

pκ
qκ

is a convergent of κ. Furthermore, let M and N be nonnegative integers

such that qN > M . Let [a0, a1, a2, . . .] be the continued fraction expansion of κ and put
a(M) := max{ai : i = 0, 1, 2, . . . , N}. Then the inequality∣∣∣∣κ− x

y

∣∣∣∣ ≥ 1

(a(M) + 2)y

holds for all pairs (x, y) of positive integers with 0 < y < M .

2.2. Properties of Fibonacci and Perrin sequences.
In this subsection we recall necessary facts about Fibonacci and Perrin numbers that

will be used in the following.

Fibonacci numbers. The characteristic polynomial of the Fibonacci sequence is x2−
x − 1 and its roots are denoted α = 1+

√
5

2 and β = 1−
√
5

2 . Thus, for any integer n ≥ 0,
the Binet formula for Fn gives

Fn =
αn − βn

√
5

.

We can prove by induction that we have

αn−2 ≤ Fn ≤ αn−1. (5)

We remark that

1 < α < 2 and
1

2
< |β| < 1. (6)

Perrin numbers. The Binet formula for the Perrin sequence is

En = γn + ηn + ρn, (7)
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PERRIN NUMBERS WHICH ARE THE SUM

where γ, η and ρ = η are the roots of the polynomial x3 − x− 1. Precisely,

γ =
r1 + r2

6
and η =

−r1 − r2 + i
√
3(r1 − r2)

12
,

where r1 =
3
√
108 + 12

√
69 and r2 =

3
√
108− 12

√
69.

We make the following useful observation,

γn−2 ≤ En ≤ γn+1, for all n ≥ 2. (8)

Furthermore, we have

1.32 < γ < 1.33 and 0.86 < |η| = |ρ| < 0.87. (9)

3. Perrin numbers as the sum or difference of two Fibonacci numbers

In this section we prove Theorems 1.1 and 1.2. For this, we first show that solutions
(n,m, s) of equation (1) satisfy m ≤ n < 196 and s < 396, then we use the computer
to check such solutions.

Let us now consider equation (1). We start by comparing s and n. By (8) and (5) we
obtain

γs−2 < Es = Fn ± Fm ≤ Fn + Fm < 2αn−1 < αn+1,

which gives that
(s− 2) log γ < (n+ 1) logα.

Since
logα

log γ
< 2, we get

s < 2n+ 4. (10)

3.1. The initial bound on n. In this section we give a bound for the value of n for
equation (1).

Using the Binet formulas of the Fibonacci and Perrin numbers, we write (1) in the
following form:

αn −
√
5γs =

√
5ηs +

√
5ρs + βn ±

√
5Fm.

Thus, we have∣∣∣1− γsα−n
√
5
∣∣∣ <

1

αn
(|β|n +

√
5αm−1 + 2

√
5|η|s)

<
1

αn−m
(
1

αm
+

√
5

α
+

2
√
5

αm
) <

5

αn−m
.

We set Λ1 := γsα−n
√
5− 1. Then we have

|Λ1| <
5

αn−m
. (11)

We now write equation (1) in the following way:

αn

√
5
± αm

√
5
− γs = ηs + ρs +

βn

√
5
± βm

√
5
.

Hence
|αn ± αm − γs

√
5| ≤ 2|η|s

√
5 + |β|n + |β|m < 2

√
5 + 2 < 7.
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Multiplying by
1

αn
(1± αm−n)−1 (with the assumption n �= m in the case of the differ-

ence equation) we get

|1− γs
√
5α−n(1± αm−n)−1| < 7

αn
· 1

1± αm−n
·

To bound
1

1± αm−n
note that

1

1± αm−n
≤ 1

1− αm−n
, and observe that

1

1− αm−n
≤

α

α− 1
< 3. Hence,

1

1± αm−n
< 3. Thus, we obtain

|Λ2| <
21

αn
, (12)

where Λ2 := γs
√
5α−n(1± αm−n)−1 − 1.

Lemma 3.1. If (n,m, s) are nonnegative integer solutions of the Diophantine equation
(1) with m ≤ n, then n < 3× 1031.

Proof. We obtain this bound of n after using Matveev’s theorem to give a lower bound
for |Λ1| and |Λ2|. In order to do this we need the necessary data. We consider the number
field L = Q(

√
5, γ) which is of degree D = 6 over Q. For the linear form Λ1 we denote

δ1 = γ, δ2 = α, δ3 =
√
5, b1 = s, b2 = −n and b3 = 1.

Notice that

h(δ1) =
log γ

3
, h(δ2) =

logα

2
and h(δ3) = log(

√
5).

Hence, we choose A1 = 0.6, A2 = 1.5, A3 = 4.9, and B = 2n+ 4.
Let us prove that Λ1 �= 0. For this, let K be the normal closure of L. We consider the
Galois automorphism σ ∈ Gal(K/Q) which satisfies σ(γ) = η and σ(α) = α. Suppose
that Λ1 = 0, hence γsα−n

√
5 = 1. By applying the automorphism σ to this equality we

obtain
ηsα−n

√
5 = 1.

Using (9), for n, s ≥ 1, we find that∣∣∣ηsα−n
√
5
∣∣∣ < 1, ∀n, s ≥ 1,

which is a contradiction with the assumption Λ1 = 0.

Then we have the following bound

|Λ1| ≥ exp(−1.4× 306 × 34.5 × 62(1 + log (6))(1 + log (2n+ 4))

×4.9× 1.5× 0.6)

> exp (−6.35× 1013(1 + log (2n+ 4))).

After taking the logarithm and using (11) we find that

(n−m) logα < 6.4× 1013(1 + log (2n+ 4)). (13)

For Λ2 := γs
√
5α−n(1± αm−n)−1 − 1, we consider the following data

δ1 = γ, δ2 = α, δ3 =
√
5(1± αm−n)−1, b1 = s, b2 = −n and b3 = 1.
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PERRIN NUMBERS WHICH ARE THE SUM

As above we take

D = 6, 
 = 3, B = 2n+4, A1 = 0.6, A2 = 1.5 and A3 = 9+3(n−m) logα.

Let us have a look on the logarithmic height of δ3. We have

h(δ3) ≤ log
√
5 + |m− n| log(α)

2
+ log 2

= log(2
√
5) + (n−m)

log(α)

2
.

Since

δ3 =

√
5

1± αm−n
< 3

√
5 and δ−1

3 =
1± αm−n

√
5

<
2√
5
< 2,

we have |log(δ3)| < 2. Then we can take

max{6h(δ3), |log δ3| , 0.16} < A3 := 9 + 3(n−m) log (α).

Note that we have Λ2 �= 0 in a similar way as for Λ1. Applying Matveev’s theorem we
obtain the following bound for Λ2:

|Λ2| ≥ exp (−1.4× 306 × 34.5 × 62(1 + log (6))(1 + log (2n+ 4))× 1.5× 0.6×A3)

> exp (−1.3× 1013(1 + log (2n+ 4))×A3).

Applying the logarithm and using (12) we obtain

n logα < 1.31× 1013(1 + log (2n+ 4))(9 + 3(n−m) logα).

Using (13) we obtain that

9 + 3(n−m) logα < 1.93× 1014(1 + log (2n+ 4)).

Therefore,
n logα < 2.53× 1027(1 + log (2n+ 4))2.

Notice that 2n+ 4 ≤ 6n for n ≥ 1, then we have

n logα < 2.53× 1027(1 + log (6n))2.

With the help of Maple we find that n satisfies

n < 3× 1031.

�

3.2. The reduction procedure. We note that the bound from Lemma 3.1 is too large
for computational purposes. However, with the help of Lemmas 2.2 and 2.3, they can be
considerably sharpened. This section is dedicated towards this goal.

Let
Γ1 = s log (γ)− n log (α) + log (

√
5).

If Γ1 > 0, using the fact that x < exp (x)− 1 for all x > 0, together with the inequality
(11) we obtain that

Γ1 <
5

αn−m
.

If Γ1 < 0, we have

|Γ1| < exp (−Γ1)− 1 = exp (−Γ1)| exp (Γ1)− 1|.
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Notice that for n−m ≥ 4 we have

exp (Γ1) > 0.27,

which gives
exp (−Γ1) < 3.8.

Then by (11) we obtain

|Γ1| <
19

αn−m
.

Therefore we have the inequality∣∣∣∣∣s log (γ)log (α)
− n+

log (
√
5)

log (α)

∣∣∣∣∣ < 39.5α−(n−m). (14)

Let us now apply Lemma 2.2. For this we put

M = 6.1× 1031, w = n−m, A = 39.5, B = α,

ψ =
log (γ)

log (α)
, μ =

log (
√
5)

log (α)
,

q60 = 722546402692124058304485813141551.

Note that
ε :=‖ μq60 ‖ −M ‖ ψq60 ‖> 0.153.

Since s < M by (10) and Lemma 3.1, the inequality (14) has no solutions for

n−m ≥ log (Aq/ε)

logB
≥ 168.75.

This means that n−m ≤ 168.

To reduce the bound on the integer n in Lemma 3.1 we apply again Lemma 2.2. We
put

Γ2 = s log (γ)− n log (α) + log

( √
5

1± αm−n

)
.

If Γ2 > 0, by the inequality (12) we have

Γ2 <
21

αn
.

If Γ2 < 0, we have

|Γ2| < exp (−Γ2)− 1 = exp (−Γ2)| exp (Γ2)− 1|.
Notice that

− 21

αn
< exp (Γ2)− 1 <

21

αn
,

and for n ≥ 7 we have

0.2 < 1− 21

αn
< exp (Γ2).

Hence, we obtain exp (−Γ2) < 5 and it follows that

|Γ2| <
105

αn
.
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PERRIN NUMBERS WHICH ARE THE SUM

Summarizing we have the following inequality∣∣∣∣∣s log (γ)log (α)
− n+

log (
√
5

1±αm−n )

log (α)

∣∣∣∣∣ < 218.2

αn
. (15)

We consider the following data:

M = 6.1× 1031, w = n, A = 218.2, B = α,

ψ =
log (γ)

log (α)
, μ±,k =

log

( √
5

1± α−k

)

log (α)
, k = 1, 2, . . . , 178,

q66 = 276210093001120272437241265542247559.

A simple calculation with Maple shows that for k = n−m ≤ 168,

ε ≥‖ μ±,94 q66 ‖ −M ‖ ψq66 ‖> 0.000499

unless k = 2 for μ+,k or k = 4 for μ−,k which are treated separately using Lemma 2.3
in the next paragraph. For ε > 0.000499 it follows from Lemma 2.2 that equation (1)
can have solutions only for integers n ≤ 196. By inequality (10) it follows that s ≤ 396.

For the cases k = 2 for μ+ or k = 4 for μ− we make use of Lemma 2.3. Notice that
for k = 4 we have Fn+4−Fn = Fn+3+Fn+2−Fn = Fn+3+Fn+1. Hence it remains to

consider only the case k = n−m = 2 for which we have μ+,2 = log

( √
5

1 + αm−n

)
=

log (α). Thus, inequality (15) becomes∣∣∣∣s log (γ)log (α)
− n+ 1

∣∣∣∣ < 218.2

αn
.

It follows that ∣∣∣∣ log (γ)log (α)
− n− 1

s

∣∣∣∣ < 218.2

sαn
.

Assume that n > 170, since s < M = 6.1 × 1031 we obtain that
218.2

sαn
<

1

2s2
.

By Lemma 2.3 the quantity
n− 1

s
is a convergent to

log (γ)

log (α)
whose continued fraction

expansion is given by

log (γ)

log (α)
= [a0, a1, a3, . . .] = [0, 1, 1, 2, 2, 6, 2, 1, 2, 1, 2, 1, 1, 11, 1, 2, 3, 1, 7, 37, . . .]

such that q57 = 78018265498682576556029134678639 is the first denominator of a
convergent

p

q
satisfying q > M . We obtain that

1

(a(M) + 2)s2
≤

∣∣∣∣ log (γ)log (α)
− n− 1

s

∣∣∣∣ < 218.2

sαn
, for any s < M.

Since a(M) := max{ai : i = 0, 1, 2, . . . , 57} = 64 we have

1

66s2
<

218.2

sαn
,
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THE FIBONACCI QUARTERLY

which gives that

n <
log (218.2(a(M) + 2)M)

log (α)
≤ 171.99.

Hence in both cases we have n ≤ 196.
We use Maple to solve the Diophantine equations (1) in the ranges 1 ≤ m ≤ n ≤ 300

and s ≤ 604, and we obtain only the solutions displayed in the statement of Theorems
1.1 and 1.2. This completes the proof of both theorems.

4. Perrin numbers as a product of two Fibonacci numbers

The aim of this section is to prove Theorem 1.3. We first show that solutions (n,m, s)
of equation (2) satisfy m ≤ n < 194 and s < 776, then we use a computer program to
check such solutions.

We start with bounding s in terms of n. We make use again of the properties of
Fibonacci and Perrin numbers to obtain

s < 4n. (16)

4.1. The initial bound on n. Now we reword equation (2) as

1

5
(αn − βn)(αm − βm) = γs + ηs + ρs.

Using the fact that β = −α−1, we obtain

1− 5γsα−n−m =
5

αn+m
(ηs + ρs)− (−α−2)n+m + (−α−2)n + (−α−2)m.

We set Λ3 = 5γsα−n−m − 1. Then we have

|Λ3| <
13

αm
. (17)

Let us rewrite equation (2) as

αn − βn

√
5

Fm = γs + ηs + ρs.

Reordering and taking the absolute value we obtain the following∣∣∣1− γsα−n
√
5F−1

m

∣∣∣ ≤
√
5

αn

(
2

Fm
|η|s + 1√

5

)
.

This gives that

|Λ4| <
6

αn
, (18)

where Λ4 := γsα−n
√
5

Fm
− 1.

Lemma 4.1. If FnFm = Es and n ≥ m, then we have n < 1.36× 1032.

Proof. We apply Theorem 2.1 to Λ3 := 5γsα−n−m − 1. We first note that, in a similar
way as in the previous section, we can show that Λ3 �= 0. We take

l = 3, δ1 = 5, δ2 = γ, δ3 = α, b1 = 1, b2 = s and b3 = −n−m.
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PERRIN NUMBERS WHICH ARE THE SUM

We are still using the field L = Q(
√
5, γ) which is of degree D = 6 over Q. We have

furthermore

h(δ1) = log(5), h(δ2) =
log γ

3
, and h(δ3) =

logα

2
.

We now choose

A1 = 10, A2 = 0.6, A3 = 1.5, and B = 4n.

With the above data, the theorem of Matveev gives that

|Λ3| ≥ exp (−1.3× 1014 × (1 + log (4n))).

Using inequality (17) we obtain

m log (α) < 1.4× 1014(1 + log (4n)). (19)

To be able to apply Matveev’s result to Λ4, we consider the necessary data, namely

l = 3, δ1 =
√
5/Fm, δ2 = γ, δ3 = α, b1 = 1, b2 = s and b3 = −n.

Notice that δ1 =
√
5/Fm =

5

αm − βm
, hence

h(δ1) ≤ 2mh(α) + log(10) = m logα+ log(10).

Moreover, by αm−2 ≤ Fm ≤ αm−1 we have

| log δ1| < 6h(δ1).

Thus, by (19) we can take A1 = 8.41× 1014(1 + log (4n)).
Now we can apply Matveev’s theorem to Λ4. More precisely, we obtain

|Λ4| ≥ exp (−1.1× 1028(1 + log (4n))2).

Hence, using (18) we obtain

n log (α) < 1.12× 1028(1 + log (4n))2.

With the help of Maple we get that

n < 1.36× 1032.

�

4.2. The reduction procedure. Now we need to reduce the bound obtained in Lemma
4.1. To do so, we use Lemma 2.2. Using the same methods as in the previous section on
log(Λ3 + 1) and log(Λ4 + 1) we obtain for m ≥ 6 the following inequalities:∣∣∣∣s log(γ)log(α)

− (n+m) +
5

log(α)

∣∣∣∣ < 100.2α−m, (20)

and ∣∣∣∣∣s log(γ)log(α)
− n+

log(
√
5

Fm
)

log(α)

∣∣∣∣∣ < 104α−n. (21)
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For (20), we consider the following data:

M = 5.44× 1032, w = m, A = 100.2, B = α,

ψ =
log (γ)

log (α)
, μ =

log(5)

log (α)
,

q63 = 11478647774934506182455699155379417.

Notice that, by Lemma 4.1 and (16) we can see that s < M. Since ε > 0.18, the inequal-
ity (20) has no solutions for m > 176.071. Then the possible solutions exist only for
m ≤ 176.

Now we focus on (21). We have the following data:

M = 5.44× 1032, w = n, A = 104, B = α

ψ =
log (γ)

log (α)
, μ =

log
(√

5
Fm

)
log (α)

,

q66 = 276210093001120272437241265542247559.

With the help of Maple, this data and Lemma 2.2 give that the inequality (21) has no
solutions for n > 194.595. Then, it has possible solutions only for n ≤ 194.

We use Maple to solve the Diophantine equation (2) in the ranges 1 ≤ m ≤ n ≤ 194
and s ≤ 776, and we obtain only the solutions displayed in the statement of Theorem
1.3. This completes the proof of the theorem.
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